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Abstract—Large volumes of data allow for modern 
application of statistical and mathematical models to practical 
social issues. Many applications of predictive models like 
criminal activity heat mapping, recidivism estimation, and child 
safety scoring rely on data that may be incomplete, incorrect, or 
biased. Many sensitive social and historical issues can 
unintentionally be incorporated into predictions causing ethical 
mistreatment. This work proposes a mechanism for continuously 
mitigating model bias by using algorithms that produce 
predictions from reasonably small subsets of data, allowing a 
human-in-the-loop approach to model application. The benefits 
offered by this framework are twofold: (1) bias can be identified 
either statistically or by human users on a per-prediction basis; 
(2) data can be cleaned for bias on a per-prediction basis. A 
modeling and data management methodology similar to that 
presented here could strengthen the ethical application of data 
science and make the process of cleaning and validating data 
manageable in the long term.  
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I.  INTRODUCTION 
Data collection efforts are often aimed at providing or 

improving services for our communities and society as a 
whole. Large scale predictive models have coevolved with the 
explosion of available data since the start of the digital age and 
these models are practically necessary for success in domains 
as diverse as healthcare, employment, finance, and 
government. Creators of predictive models were motivated by 
a critical need to anticipate the future and to take action in 
advance. When the models succeed they can create life-saving 
value [1] or change economies [2], but when they fail they can 
reinforce historical social injustice [3] and leave at-risk 
children without needed help [4]. It is not surprising then that 
interpretability is an important research area for commonly 
used predictive models [5]–[7].  

A model is often considered unethical when it violates the 
expected practices and procedures of a formal agency like a 
government or business. For example, a model built from 
anonymous historical data and designed to assist a business in 
effective employee hiring may recover protected demographic 
information on the race, sex, or religion of the applicant. 
However, Title VII of United States federal code prohibits the 
use of this information in employment decisions. The 
predictive model would be acting unethically and unlawfully, 
but the user (the business) may be entirely unaware.  

Many researchers have unveiled clear signs of unequal and 
racial treatment of individuals by predictive models [3], [8], 
[9]. For example, Angwin et al. analyzed a well-known 
criminal risk assessment: COMPAS and concluded the out- 
comes of the model are racially biased [3]. They showed that 
“Black defendants were twice as likely as white defendants to 
be misclassified as a higher risk of violent recidivism, and 
white recidivists were misclassified as low risk 63.2 percent 
more often than black defendants.” The U.S. government has 
acknowledged the enormous potential for negative impact in 
biased models and the White House published several reports 
highlighting the potential bias that could adversely affect 
individuals or groups [10]. Research is constantly underway 
that proposes ethical frameworks and potential solutions to 
protect principles of ethics and privacy [11]–[13].  

In an effort to prevent biased and discriminatory decisions, 
policy makers and practitioners have classified unwanted 
discriminatory attributes as protected information that cannot 
be used as predictors in a model. However, a model made from 
anonymized unprotected data can become unethical even when 
it is not provided protected information. The model needs only 
to infer protected characteristics from the provided data in the 
prediction process [11], [14]. The possibility of protected 
inference makes developing unbiased models challenging, 
particularly when large amounts of data are involved. A burden 
is placed on users, who must identify ways to ensure 
predictions remain ethically sound. Generally, there are only 
two methods to ensure a model is not violating ethical 
expectations: either carefully monitor and analyze all pre-
dictions for ethical mistreatment, or guarantee that the data 
utilized by the model (and how that data is used to predict) is 
ethically sound. This work makes an argument for the latter, as 
a common class of models can make good predictions from 
human-digestible subsets of large-scale data.  

This paper makes an argument for per-prediction ethical 
validation of data and models via local approximation methods 
that produce interpretable results. The improvements offered 
by this methodology are twofold: (1) bias can be identified 
either statistically or by human users on a per-prediction basis; 
(2) data can be cleaned for bias on a per-prediction (regular) 
basis. Modeling techniques similar to those presented in this 
work could not only strengthen the ethical application of data 
science, but also make the process of cleaning and validating 
data manageable in the long term. 



II. RELATED WORK 
Algorithmic bias has long been a subject of research on 

machine learning [15]–[17]. Mitchell [18] initially defined 
machine learning bias as “any basis for choosing one 
generalization over another, other than strict consistency with 
the instances”. Mooney [19] expanded this definition with the 
following assertions: (1) that every model bears some inherent 
bias, and (2) that detecting a model’s bias requires comparison 
against others. In recent years, the broad adoption of machine 
learning has made algorithmic bias a factor in real-world data 
discrimination [3], [8], [9]. 

Several prior works have explored the problem of 
measuring algorithmic bias [20]–[22]. Calders & Verwer [23] 
formalized discrimination as, given an input characteristic, the 
unequal distribution of outputs for different groups. Calders-
Verwer (CV) scoring is frequently [24]–[28] used to measure 
group discrimination [29], [30]. For example, if a loan 
classifier produces dissimilar outcomes for both sexes (e.g. P(Y 
= loan | S = male) > P(Y = loan | S = female)), then its CV 
score is measured as the difference in outcomes between those 
groups (e.g. P(Y=loan | S=male)−P(Y=loan | S= female)). 
Many works have since expanded on CV scoring for 
preventing discrimination [26], [31], [32]. Four general 
approaches exist: (1) Suppression – removing attributes most 
correlating with discrimination-sensitive attributes; (2) Dataset 
“massaging” – altering labels of some objects to mitigate 
unwanted classifier outcomes; (3) Reweighting – assigning data 
carefully chosen weights to lessen the degree of dis- 
crimination; (4) Sampling – under- and over-sampling certain 
groups to compensate. 

A recent focus of machine learning and data science 
research has been on improving model interpretability [33], 
[34]. More specific goals include transparency for assessing 
model ethicality [35], [36], augmenting informativeness [37]– 
[39], and inferring causality [40]. An obstacle to model 
interpretability is the lack of transparency of black-box 
classifiers such as deep neural networks [41]–[43]. Post-hoc 
interpretability [33] (e.g. visualizations or explanations) 
represents a promising alternative, however, the formalization 
of “model-agnostic” methodologies remains an ongoing 
research problem [44]. 

III. MODEL DESCRIPTIONS 
In order to construct a predictive model from data, it is 

usually assumed that the phenomenon being predicted has 
some underlying function that can be approximated. Many 
algorithms exist for constructing approximations from data 
representing unknown functions. The following subsections 
roughly outline the mathematical formulation of both the 
(arguably more popular) global models and the (arguably less 
popular) local models analyzed in the present case study. 

A. Global Predictive Models 
 Classic machine learning and data science techniques 
applied today often rely on solving a very specific problem. 
They create a global predictive model with the aim of capturing 
trends that exist across (hundreds of) thousands of examples. In 
general, these global models are constructed given real valued 

data matrix , a truth function f : , and 
labels f (x(i)) for row vectors x(i) � X, 1 ≤ i ≤ n. These models 
find the solution to 

 

where  is the parametric approximation, f(X) is 
used to denote the vector with components f(X)i = f(x(i)) and 

 is an appropriate measure. The labels may be real numbers, 
like probability of recidivism estimates, or categories such as 
“safe” or “not safe” for an at-risk child.   

 The difficulty with these models is that the minimization 
search which identifies the parameters for the model is 
performed over all data. Whenever it is time to explain a 
prediction, the answer is often “all data was used to capture this 
trend”. The models of this form that will be applied are a 
multilayer perceptron (MLP) and a decision tree (DT).  

1) Multilayer Perceptron: The neural network is a well- 
studied and widely used method for both regression and 
classification tasks [45]. When using the rectified linear unit 
(ReLU) activation function [46] and training with the BFGS 
minimization technique [47], the model built by a multilayer 
perceptron uses layers   

 
where Wl is the i by j weight matrix of layer l. In this form, the 
multilayer perceptron produces a piecewise linear model of the 
input data. The computational complexity of training a 
multilayer perceptron is O(ndm), where m is determined by the 
sizes of the layers of the network and the stopping criterion of 
the BFGS minimization used for finding weights. This paper 
uses the scikit-learn MLP regressor [48], a single hidden layer 
with 100 nodes, ReLU activation, and BFGS for training. 

2) Decision Tree: The decision tree is used because of the 
relatively straightforward interpretation of the prediction pro- 
cess. Model construction is out of the scope of this description, 
but is a well-studied process [49]. A prediction at a point z � 

 for a decision tree constructed over a real vector space is 
made by traversing nested axis-aligned conditionals of the form 

 
This paper uses the scikit-learn Decision Tree regressor 

[48], no maximum depth or number of nodes, and the Gini 
impurity measure of information gain. 

B. Local Predictive Models 

The construction of approximation functions  
as described for global models can instead be approached on a 
per-prediction basis. A model is henceforth referred to as local 
when any prediction made at a point z �  is only a function 
of a set of points L � X, where membership in L is determined 
by a distance metric. The advantage of using a local model is a 
more compact description of how a prediction is made that is 
derived from a manageable subset of all known data. Local 
models become particularly useful when predictions regard 
ethically sensitive issues and need to be rigorously evaluated 



for bias. The source data for any prediction can be checked on 
the spot for fairness of representation against any number of 
protected attributes. 

The following sections describe the two local approx-
imation techniques that will be used to predict recidivism 
likelihood in this work. 

1) Nearest Neighbor: A well-studied technique for classi- 
fication and approximation is the nearest neighbor algorithm 
[50]. This algorithm (using the 2-norm to measure distance) 
will represent a baseline for comparison because it is the most 
mathematically simple local model in this study. A prediction 
is made for Nearest Neighbor at point z �  by 

 
This approximation technique can be applied in a wide 

range of applications, however it must be noted that the 
approximation surface it produces is not C0 (continuous in 
value). An extension of this model that is not applied in this 
work, but could yield useful results is the k nearest neighbor 
algorithm. This is further mentioned in Section V. 

2) Voronoi Mesh: While nearest neighbor inherently uti- 
lizes the convex region  (Voronoi cell [51]) consisting of 
all points closer to x(i) than any other point x(j). The Voronoi 
mesh [52] smooths the nearest neighbor approximation by 
utilizing the Voronoi cells to define support via a generic basis 
function  given by 

 
where x(i) is the center of the Voronoi cell, y �  is an 
interpolation point, and d(y | x(i)) is the distance between x(i) and 
the boundary of the Voronoi cell  in the direction y − x(i). 

 and  has local support. While (x(i)) = 1, 
the 2 in the denominator causes all basis functions to go 
linearly to 0 at the boundary of the twice-expanded Voronoi 
cell. Note that this basis function is C0 because the boundaries 
of the Voronoi cell are C0. In the case that there is no boundary 
along the vector w, the basis function value is always 1. 

While the cost of computing exact Voronoi cells for any given 
set of points grows exponentially [53], the calculation of d is 
linear with respect to the number of control points and 
dimensions. Given any center x(i) � , set of control points C 
� X, and interpolation point y � , d(y | x(i)) is the result of 

 
The resulting algorithm is capable of producing predictions 

in O(n2d) computation time, which is relatively fast for all but 
tens of millions of points. Most importantly there is no training 
for this algorithm, so as data is updated the fundamental model 
itself is changed accordingly. 

IV. DATA AND RESULTS 
A case study is presented to demonstrate the comparative 

performance of local models versus global models on an 

ethically sensitive prediction task. The comparison rests on a 3-
Year Recidivism for Offenders Released from Prison in Iowa 
dataset, publicly available on the U.S. Government open data 
(data.gov) website. This dataset reports whether or not an 
offender is convicted of another crime within three years of 
being released from prison. This dataset naively provides a 
classification task (predict whether or not a released offender 
would recidivate) or, as will be considered here, it also 
provides a regression task (predict the probability of 
recidivism). By collapsing all entries with identical predictor 
values, this work converts each offender description into a 
collection of matching individuals with a single real-valued 
estimate for the probability of recidivism. 

This dataset provides 21,646 instances, among which 
14,619 instances do not recidivate and 7,027 instances do 
recidivate. The distribution of ethnicities in this data are 
distinctly different from the ethnic distribution for the actual 
population of Iowa in 2016 (See Figure 2). There exists 
obvious gaps especially for White non-Hispanic (67.4% in data 
decreased from 88.7% of actual population) and Black or 
African American (23.6% in data increased from 2.9% of 
actual population). 

The data provides 17 unique pieces of information related 
to each individual, including the crime committed in the case of 
recidivism (blank for non-recidivating individuals). The 
relevant features to this prediction task can be observed in 
Table I. The omitted features are either not relevant to the 
prediction task, or are uniquely determined by one of the 
chosen features. For this work the “Race – Ethnicity” is 
reserved as protected attribute (not available to models) and is 
later used to evaluate bias in predictions. Any categories with 
fewer than 100 samples are discarded in order to reduce the 
resulting dimension and prevent predictions from being made 
with statistically insignificant amounts of supporting data. 
Categorical features are encoded with c unique categories into  



TABLE I.  THIS TABLE PROVIDES A SAMPLE OF THE VALUES FOR FEATURES RELEVANT TO THE RECIDIVISM PREDICTION 

 by mapping each category onto one of the vertices of a 
regular simplex centered at 0 where all vertices v satisfy  = 
1. The feature named “Age At Release” was tested as both the 
mean age of the range and as a mapped categorical. Results 
demonstrated insignificant differences in outcome, so the 
numerical mean age is used for experiments. 

In all experiments, predictions are evaluated against the 
labeled recidivism probability while the race & ethnicity in- 
formation is used to evaluate model bias. After preprocessing, 
the original 21, 018 instances with 17 features are reduced to 6, 
632 in a 50-dimensional real vector space. The distribution of 
recidivism probabilities can be seen in Figure 1. 

In order to estimate the performance of the different 
algorithms, k-fold cross validation as described in [54] with k = 
10 is used. All algorithms are given the same ten folds of 
randomized training and testing data in order to maintain 
comparative fairness. Note that in this scheme there will be 
exactly one prediction made for each data point, meaning all 
analysis of results is done with the same sized data as described 
in Section IV. 

Figure 3 displays the evaluation of all algorithms. The 
Voronoi Mesh and Neural Network produce the best results. 
The prediction outcomes are promising, demonstrating that 
50% of recidivism likelihood predictions have less than a 16% 
absolute error without any attempt at problem-specific tuning. 

V. DISCUSSION 
As can be observed in Figure 3, the Voronoi Mesh (VM) 

algorithm can make a prediction based on roughly 2d (~100) 
points from data and compete with the global fitting MLP that 
uses all data (~7K) points. This demonstrates that local 
predictive models are capable of producing equally accurate 
predictions when compared with global predictive models with 
far more compact support from data. 

The benefit of using the VM (or any local model) to make 
predictions in ethically sensitive applications is that every 
prediction has a manageable set of source data that describes 
how a prediction is produced. Addressing the two points in 
Section I, statistical tests can be run on these source data points 
to reduce prediction bias in desirable ways (e.g. data could be 
filtered until the predictive population matches the 
demographics of the state). Human-readable source for a 
prediction also opens the door to regular validation of source 
data, an important aspect of model maintenance. 

In order to maintain ethical conscientiousness in predictive 
modeling, it is vital that predictions can be audited for fairness 
and adherence to standards. Local predictive models provide a 
meaningful avenue for pursing the legal right to a 
representative sample, and the legal right to a fair prediction. 

This case study provides only a glimpse at the prospective 
application of local models. There are far more advanced (and 
potentially more accurate models) with very similar properties: 
Delaunay triangulations (simplicial meshes) [55], k nearest 
neighbor, Linear Shepard [56] (and other Shepard methods), 
and Box Spline Meshes [52], to name only a few. 

VI. CONCLUSION 
This paper presents an argument for the application of local 

models to ethically sensitive prediction tasks. Sample results 
demonstrate that algorithms which rely only on local support 
are capable of producing predictions of comparable accuracy to 
popular global techniques while maintaining an enhanced level 
of predictive transparency. The potential for operating under 
more concise legal definitions and meaningful statistical 
analyses further supports the implementation of local 
prediction methodologies. A recidivism case study demon-
strates that the use of more human-interpretable models for 
prediction could not only strengthen the ethical application of 
data science, but also make the process of cleaning and 
validating data manageable in the long term. 
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