Same Coverage, Less Bloat:
Accelerating Binary-only Fuzzing with
Coverage-preserving Coverage-guided Tracing

Stefan Nagy Anh Nguyen-Tuong Jason D. Hiser
snagy2@vt.edu nguyen@virginia.edu hiser@virginia.edu

Jack W. Davidson Matthew Hicks
jwd@virginia mdhicks2 @vt.edu

VIRGINIA &= JNIVERSITY
TECH TVIRGINIA

Background

VIRGINIA -A-U IVERSITY
TECH alllE IRGINIA

Software Fuzz-testing (Fuzzing)

* Today’s leading automated bug-finding approach
* Uncover bugs by bombarding program with inputs

« Coverage-guided search: breed only the winners
* Measure each input’'s code coverage via tracing
« Keep and mutate only those reaching new code

A \\%,
’ Trace & maximize
7 code coverage

VIRGINIA = INIVERSITY
TECH AlE “7\/TRGINIA

Coverage-guided Fuzzing

€ Triage

On average, fewer than 1 in 10,000 inputs reach new code coverage

For binary-only fuzzing, compounded by upwards of 10x slower speed

VIRGINIA = INIVERSITY
TECH AlE “7\/TRGINIA

Coverage-guided Tracing (CGT)

€@ Generatio Interrupt

Oracle

Filter-out the 99.9% of useless inputs at native speed without tracing

Overhead approaches 0% = orders-of-magnitude faster binary fuzzing

VIRGINIA = INIVERSITY
5 TECH BIE "7\/IRGINIA

Adoption of Coverage-guided Tracing

Despite some adoption, CGT’s performance advantages
remain sidelined by the majority of today’s fuzzers

Why? Most rely on edge and hit count coverage metrics,
yet CGT only supports binarized basic block coverage

VIRGINIA “= [INIVERSITY
TECH AlE "7\ IRGINIA

The Code Coverage Dilemma

For critical edge A—C:

Edge Coverage CGT: Block-level Coverage

« Will capture every edge « If path A—~B—C seen first,
irrespective of path taken can’t discern edge A—C

For back edge C—A:

Hit Counts CGT: Binarized Counts
« Will capture each count « Can’t discern any count
backwards edge is taken edge C—A is re-taken

W VIRGINIA = INIVERSITY
TECH AlE “7\/TRGINIA

The Code Coverage Dilemma

Name Covg Hits| Name Covg Hits| Name Covg Hits
AFL Edge + | EnFuzz Edge ProFuzzer Edge
AFL++ Edge FairFuzz Edge QSYM Edge v
AFLFast Edge « | honggFuzz Edge X REDQUEEN Edge
AFLSmart Edge GRIMORE Edge SAVIOR Edge
Angora Edge lafIntel Edge SLF Edge
CollAFL Edge libFuzzer Edge Steelix Edge
DigFuzz Edge Matryoshka Edge Superion Edge
Driller Edge | MOpt Edge TIFF Block
Eclipser Edge NEUZZ Edge VUzzer Block

Is it possible to uphold the high speed of CGT while
meeting existing fuzzers’ coverage demands?

W VIRGINIA = INIVERSITY
TECH AlE “7\/TRGINIA

Coverage-preserving
Coverage-guided Tracing

VIRGINIA &= [UNIVERSITY
V? TECH allinE OR/IRGINIA

Guiding Principle

How can CGT's lightweight, interrupt-driven coverage
support finer-grained edge and hit count coverage?

s 2 b

To extend CGT beyond binarized block coverage, we must find ways to
make these finer-grained control-flows self-report their coverage

VIRGINIA = INIVERSITY
10 TECH BIE "7\/IRGINIA

Conventional Edge Coverage at Block Level

Resolving critical edges
« Edges whose start, end have 2+ out, in edges (respectively)
* |If non-critical path is first, critical edge (A—C) never seen!

Naive approach: split each with new dummy block
« Covering a dummy (D) implicitly covers its critical edge
* To facilitate CGT, add interrupts on every dummy

Problem: splitting adds 30—-40% more basic blocks
 Accumulates more and more overhead over native speed

Splitting each critical edge with new basic
blocks will deteriorate CGT's performance

VIRGINIA = INIVERSITY
11 TECH BIE "7\/IRGINIA

How do critical edges manifest?

== Cond. Target =@~ Indirect Jump == Return
~¥~ Cond.Fallthru =)= Indirect Call

Prop. Critical Edges per Exec

F’WW

bsdtar cert-basic clean_text

| sssesssssssssssssssss T e Y

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Minutes of Fuzzing Elapsed Minutes of Fuzzing Elapsed Minutes of Fuzzing Elapsed

Observation: 89% of fuzzer-covered critical
edges are conditional jump target branches

VIRGINIA = INIVERSITY
TECH AlE “7\/TRGINIA

Optimizing Common-case Critical Edges

Observation: conditional jumps’ targets are self-encoded
« Jump instruction encoding:

[opcode] [PC-relative displacement]

* To resolve a jump to a target address:

[3%]

To signal the edge as taken, we can resolve
its target to a CGT-style interrupt

Intuition: rewrite and force execution to an interrupt!

VIRGINIA = INIVERSITY
13 TECH BIE "7\/IRGINIA

14

Our Solution: Jump Mistargeting

* Modify jump target to resolve in a CGT-style interrupt

Embedded Interrupt Jump Mistargeting

MOVL $0, -8 (%RBP)
CMPL $10, -8 (3RBP)

JGE BB& 0x000010 $ xxd a.out

INT3 = = = = _ , T
S| @ fpdret 000000 0 89
@ resoives w0 ' 000010 CC 00

interrupt instruction \
(terminates execution)

Zero-address Jump Mistargeting

MOVL $0, -8 (%RBP)
CMPL $10, -8 (%RBP)

JGE BBU 0x00 = = § () redirect
v Jump

!

resolves to -7
illegal address
(terminates execution)

Outcome: CGT-style edge coverage at native speed
(i.e., zero additional basic blocks or instructions)

 Following a crash, restore displacement for future test cases

W VIRGINIA = INIVERSITY
TECH AlE “7\/TRGINIA

Conventional Hit Count Coverage Tracking

Most fuzzers rely on AFL-style bucketed hit counts:

(11 (02131 [4,7]1 [8,15] [16,31 1 [32,127] [128+]

Advances to higher buckets (e.g., [3]1—[4,7]) flagged interesting

Problem: implemented within always-on instrumentation
* Increments each edge’s unique counter for each execution

Hit count tracking'’s reliance on exhaustive tracing
contradicts CGT’s only-when-needed tracing mindset

VIRGINIA = INIVERSITY
15 TECH BIE "7\/IRGINIA

Why are hit counts important?

A testing property of cycles (e.g., loops)

Unlocking deeper loop iterations
« Common precedent for many critical bugs

Differentiating progress of nested loops
* Maximal consecutive iterations

Observation: Hit counts primarily guide fuzzing
toward higher loop exploration progress

= e
-

S |5

Y @ | o

(header/exiting/l@ =~ =

S| =

0 | 3

Y O |

exiting/latch)

\J

16

W VIRGINIA = INIVERSITY
TECH AlE “7\/TRGINIA

Optimizing Loop Hit Count Tracking

Observation: loops’ induction variables encode their iterations

iter 1 iter 2 iter 3
for(int i = 0; i < 100; i =i + 1){ i=0 i = i=9

—————

 Track jumps to higher buckets via range check on induction variable

for(i=0; i<100; i++){ - . :
[) Intuition: use interrupt to detect crossing buckets!

if (i > 1) (15) |

3:::?[2) 31 (11 | r21 | 131 | 14,7

~.--—_—

3) 127)
=S EOD (8,151 | [16,31] | [32,127] | [128+

To signal a loop’s change in a hit count buckets, we can
use a range check guarded by CGT-style interrupts

VIRGINIA = [INIVERSITY
TECH AlE “7\/TRGINIA

Our Solution: Bucketed Unrolling

* Inject discrete interval checks (with interrupts on all false edges)

* If crash, entered a higher bucket; then clear interrupt and move on

Outcome: CGT-style hit counts without
relying on always-on tracing

VIRGINIA = INIVERSITY
18 TECH BIE "7\/IRGINIA

19

Implementation: HeXcite

 High-Efficiency eXpanded Coverage for Improved Testing of Executables
« Binary-only fuzzer built atop AFL 2.52b and ZAFL fuzzing rewriter

« Jump mistargeting:
* Implementation based on zero-address mistargeting
« Critical edge identification performed after control-flow parsing
« Jumps converted to 32-bit displacements (e.g., all are mistargetable)

* Bucketed unrolling:
* Implementation based on conventional AFL-style eight ranges
 Loop identification performed via standard back edge analysis
» For simplicity, we insert a fake induction variable and incrementor

VIRGINIA “= [INIVERSITY
TECH AlE "7\ IRGINIA

20

Evaluation

VIRGINIA = [NIVERSITY
TECH AllE “7\/TRGINIA

21

Evaluation Setup

Approach Tracing Type Level Coverage
HeXcite coverage-guided | binary | edge + counts
UnTracer coverage-guided | binary block
CQEMUT | always-on | binary | edge + counts
Dyninst always-on binary | edge + counts
RetroWrite always-on binary | edge + counts
“Clang | always-on | source | edge + counts

 Benchmarks: 8 diverse open-source + 4 closed-source binaries

« Evaluations: perform 16x24-hr trials per benchmark on Azure cloud
« Edge coverage: collect with LLVM instrumentation and AFL tools
 Loop coverage: compute max consecutive iterations capped at 128

* Performance: scale throughput relative to worst-performing competitor

* Bug-finding: crash triage performed via AddressSanitizer

\/a

VIRGINIA —A-U
TECH

IVERSITY
IRGINIA

Does HeXcite improve edge coverage?

Clang —0- QEMU —&— UnTracer

—®— RetroWrite —@— Dyninst —¥— HeXcite

o © =
o9 © o
e o <o =
© v W o
o0 © wu o

o

o
o
o)
=)

o
3]

C
Rel. Edge Coverage
Rel. Edge Coverage

nasm tcpdump unrtf
100 10t 0 109 10t 0 100 10!

Hours of Fuzzing (log-scale) Hours of Fuzzing (log-scale) Hours of Fuzzing (log-scale)
6.2% more edges than block-only UnTracer

23.1%, 18.1%, and 6.3% more edges than
binary-level QEMU, Dyninst, and RetroWrite

1.1% more edges than source-level AFL-Clang

0.800
0

©
w

VIRGINIA = INIVERSITY
22 TECH BIE "7\/IRGINIA

Does HeXcite improve loop exploration?

Relative Max Consecutive Iterations Per Loop Relative Max Consecutive Iterations Per Loop

45 1.76 3.0 45 ° 10 1.0 4.06
« P 1.09 16.12 n 3.18
85 1.24 3.26 57 1.0
~ 107 10 | 358 RINE .
114 s 1z 195 o 2028 438 425 LKL - 10.56
10 o org < ROCENXTE 149 | 376

0 2.27 . 13.04 . 2.88
< 1.0 1.0 1.33 1.7 12.65 219
w - -
0 1 2 3

4 5 0 1 2 3 4 5 6 7

™ 1.53 1.5

130% more iterations than block-only UnTracer

36% more iterations than source-level AFL-Clang

VIRGINIA .A.U IVERSITY
TECH AlE “7\/TRGINIA

24

B (o) o
o o o

Relative Total Executions
N
(@]

Is HeXcite as fast as block-only CGT?

mss QEMU mmm Dyninst mmm RetroWrite Clang = HeXcite J

5.0
o MR X_X - m 0.0 Em EEX xlll II III XX EX X BXX EX X

jasper sam2p yara mjs nasm sfconvert tcpdump unrtf Izturbo pngout rar unrar

10% higher best-case than block-only UnTracer

11.4x, 24.1x, and 3.6x the fuzzing throughput of
binary-level QEMU, Dyninst, and RetroWrite

2.8x the throughput of source-level AFL-Clang

VIRGINIA = INIVERSITY
TECH AlE “7\/TRGINIA

25

Can HeXcite improve binary bug-finding?

Clang —0—- QEMU —&— UnTracer
—®— RetroWrite —@— Dyninst —¥— HeXcite

1.0

1.0

) o o
- 0.8 - 0.8 go,s
;0 0 m
q:), 0.6 g 06 g 0.6
A=) =) A=)
:C) 0.4 :C) 0.4 :C) 0.4
D o, unrtf D o’ nasm D oo sfconvert
@ o ¥ °

0.0 0.0 0.0

0 4 8 12 16 20 24 0 4 8 12 16 20 24 0 4 8 12 16 20 24
Hours of Fuzzing Hours of Fuzzing Hours of Fuzzing

12% more bugs than block-only UnTracer

521%, 749%, and 56% more bugs than
binary-level QEMU, Dyninst, and RetroWrite

46% more bugs than source-level AFL-Clang

VIRGINIA = INIVERSITY
TECH AlE “7\/TRGINIA

26

Coverage-guided Tracing

Identifier Category Binary
HEXCITE UnTracer

CVE-2011-4517 heap overflow jasper 13.1 hrs 18.2 hrs
GitHub issue #58-1 stack overflow mjs 13.3 hrs 19.0 hrs
GitHub issue #58-2 stack overflow mjs 13.6 hrs 16.4 hrs
GitHub issue #58-3 stack overflow mjs 5.88 hrs 6.80 hrs
GitHub issue #58-4 stack overflow mjs 8.60 hrs 10.7 hrs
GitHub issue #136 stack overflow mjs 1.30 hrs 7.50 hrs
Bugzilla #3392519 null pointer deref nasm 12.1 hrs 13.5 hrs
CVE-2018-8881 heap overflow nasm 5.06 hrs 14.6 hrs
CVE-2017-17814 use-after-free nasm 3.54 hrs 6.31 hrs
CVE-2017-10686 use-after-free nasm 3.84 hrs 5.40 hrs
Bugzilla #3392423 illegal address nasm 8.17 hrs 14.2 hrs
CVE-2008-5824 heap overflow sfconvert 13.1 hrs 14.8 hrs
CVE-2017-13002 stack over-read tcpdump 8.34 hrs 12.5 hrs
CVE-2017-5923 heap over-read yara 3.24 hrs 5.67 hrs
CVE-2020-29384 integer overflow pngout 5.40 min 34.5 min
CVE-2007-0855 stack overflow unrar 10.7 hrs 17.6 hrs

52.4% exposure speedup over block-only UnTracer |

Does HeXcite accelerate bug-finding?

VIRGINIA = [NIVERSITY

TECH

alliE 3

IRGINIA

Conclusion: Why Coverage-preserving CGT?

« Maximizing fuzzing performance is critical for effective bug-finding.

* Yet, the coverage shortcomings of Coverage-guided Tracing—fuzzing’s
fastest tracing strategy—restrict fuzzers to far slower, always-on tracing.

Making CGT’s orders-of-magnitude faster tracing available to all fuzzers demands
extending it to the finer-grained coverage metrics used today: edges and hit counts.

By forcing finer-grained control-flow to self-report its coverage, we expand CG]
to binary-level edge and hit count coverage at virtually no performance loss.

 Fuzzing speed: 2.8—24.1x higher than binary- and source-level tracing
 Code coverage: 6.2% more edges and 130% deeper loops than block-only CGT
« Bug-finding: 12—749% more bugs than block-only CGT and always-on tracing

VIRGINIA = INIVERSITY
27 TECH BIE "7\/IRGINIA

28

Thank youl!

O Find HeXcite and our evaluation benchmarks at:

https://github.com/FoORTE-Research/hexcite

Happy (binary) fuzzing!

VIRGINIA = INIVERSITY
TECH AlE “7\/TRGINIA

