TeTRIS:

General-purpose Fuzzing for Translation Bugs
in Source-to-Source Code Transpilers

Yeaseen Arafat Stefan Nagy
University of Utah University of Utah

FUTURLES

LAB FUTURE TECHNOLOGY FOR USABLE, RELIABLE, &
EFFICIENT SECURITY OF SOFTWARE & SYSTEMS

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUU Yeaseen Arafat

Transpilers: Automated Cross-language Code Translation

High-level goal: translate code from one programming language to another

///7 int func(){ ‘\\\ ///;ub unsafe extern "C" fn func() —;\\\

int y, x, res; libc::c_int {

let mut y: libc::c_int = 0;
let mut x: libc::c_int = 0;
let mut res: libc::c_int = 0;

if (y < 5) {
goto LABEL_RES;

} if y <5

if (x < 20) { { cu;_blk =1; }
. else if x < 20
goto LABEL_END; { cur_blk = 2: }
b else
LABEL_RES: { cur_blk = 1; }
res = x*y; match cur_blk {
LABEL _END: 1 =>{ res = x*y; }

-=>{}

o return res; y Transpi[er L } e (65 y
(e.g., C2Rust)

Original C code Translated Rust code

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Yeaseen Arafat

Transpilers: Automated Cross-language Code Translation

High-level goal: translate code from one programming language to another
= An emerging backbone of modern translation-oriented software development tasks

/

.

"

<" TR

LS

v/

Software Migration

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

/
V-

\.

\

-

7~ >

/

Security Retrofitting

Yeaseen Arafat

"

/

Code Interoperability

Transpilers: Automated Cross-language Code Translation

High-level goal: translate code from one programming language to another

= An emerging backbone of modern translation-oriented software development tasks
= Success of these development tasks often undermined by incorrect code translation

o
- P e

— = = = =
o ——————_—_—_—__ -

e,
S

- = = = = = o

e S A

Buggy Transpilers Mis-translated Code Downstream Failures

;
\.
\

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Yeaseen Arafat

Transpilers: Automated Cross-language Code Translation

High-level goal: translate code from one programming language to another

= An emerging backbone of modern translation-oriented software development tasks
= Success of these development tasks often undermined by incorrect code translation

{ Problem: what kinds of translation errors do transpilers face in practice? }

v ~ y— - L v — — - ~r

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Yeaseen Arafat

Transpilers: Challenges to Successful Code Translation

Manually distilled reported transpiler bugs into three distinct categories

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Yeaseen Arafat

Transpilers: Challenges to Successful Code Translation

Manually distilled reported transpiler bugs into three distinct categories

Bug Category | Transpiler | GitHub Issue No. & Error Description lcz'xgn;;:;e: (#define func(arg){ I
XGO] _ .
CxGo #42: Mis-included variable re-declaration AL 3T = g
§yntact!c C2Go #848: Mis-recovered switch-case values if (0) {
Mishandling func(5) :
C2Nim #217: Mis-recovered struct members func(6);
\} Original C cmy)
/if false({ \
var x int = 5
_ =X
var x int = 6
_ =X
\} Mis-translated (y
SCHOOL OF COMPUTING

Yeaseen Arafat

UNIVERSITY OF UTAH

Transpilers: Challenges to Successful Code Translation

Manually distilled reported transpiler bugs into three distinct categories

Bug Category Transpiler | GitHub Issue No. & Error Description Examp le:
Zig #20005 #define func(x) (
CxGo #42: Mis-included variable re-declaration
Syntactic C2Go #848: Mis-recovered switch-case values 274 :8
Mishandling
C2Nim #217: Mis-recovered struct members)
C2Rust #486: Mis-recovered int-float conversion _ DR EEE
Type. Zig Translate-C |#20005: Mis-recovered bool-int conversion
Conversion
Zig Translate-C | #20638: Mis-recovered int->bool conversion / \
if(@as(c_int,2))
@as(c_int,4);
else
@as(c_int, 8);
\ Mis-translated Zy
SCHOOL OF COMPUTING Yeaseen Arafat

UNIVERSITY OF UTAH

Transpilers: Challenges to Successful Code Translation

Manually distilled reported transpiler bugs into three distinct categories

Bug Category Transpiler | GitHub Issue No. & Error Description IC:';(:mp l;6 (; int func() N\
ust # - 1.
CxGo #42: Mis-included variable re-declaration ?e%u:’rll q:
§yntact!c C2Go #848: Mis-recovered switch-case values }
Mishandling int main() {
C2Nim #217: Mis-recovered struct members -func();
C2Rust #486: Mis-recovered int-float conversion \} DR EEE
Type. Zig Translate-C |#20005: Mis-recovered bool-int conversion
Conversion
Zig Translate-C | #20638: Mis-recovered int->bool conversion /fn func()-> c_int {\
C2Nim #240: Unrecovered standard int types g =1 as c_int;
return g;
Code C2Rust #896: Unrecovered call instruction
Fragment ; fn main() {
Omissions Go2Hx #19: Unrecovered array size // -func();
HxCpp #225: Unrecovered optional int arguments \} Mis-translated Rust
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Yeaseen Arafat

Transpilers: Challenges to Successful Code Translation

Manually distilled reported transpiler bugs into three distinct categories

[Motivation: how can mis-translation errors be uncovered automatically? J

(=)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Yeaseen Arafat

10

Prior Work: Approaches for Fuzzing Code Processors

Observation: current approaches ill-suited to today’s diverse transpilers

Fuzzer

AFL++

libFuzzer

AFL-Comp-Fuzz

Polyglot

CSmith

YARPGen

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Yeaseen Arafat

Prior Work: Approaches for Fuzzing Code Processors

Observation: current approaches ill-suited to today’s diverse transpilers

C1: Language

Fuzzer Agnostic
AFL++ v
libFuzzer

AFL-Comp-Fuzz

Polyglot

CSmith

YARPGen

X x| %[

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Yeaseen Arafat

Kb

Supports only C
(e.g, Clang, GCC)

Any language
(e.g, C, Py, Go)

12

Prior Work: Approaches for Fuzzing Code Processors

Observation: current approaches ill-suited to today’s diverse transpilers

Fuzzer C1:Language | C2: Minimal
Agnostic Lang. Spec.
ArL v None
libFuzzer v None
AFL-Comp-Fuzz v None
Polyglot v v
CSmith X X
YARPGen % X

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

Yeaseen Arafat

K

Supports

(e.g., Clang, GCC)

Fuzzer

Core

Spec

~N

CSmith

~38.9

K LoC

Polyglot

~7.0K

~15K

/

13

Prior Work: Approaches for Fuzzing Code Processors

Observation: current approaches ill-suited to today’s diverse transpilers

Fuzzer C1: Language C2: Minimal C3: Upholds
Agnostic Lang. Spec. | Code Validity
AFLs v None X
libFuzzer v None X
AFL-Comp-Fuzz V4 None X
Polyglot v v X
CSmith % X v
YARPGen X X v

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Yeaseen Arafat

K

Supports
(e.g., Clang, GCC)

Fuzzer | Semantic Validity
CSmith ~100%
Polyglot ~20%

/

14

Prior Work: Approaches for Fuzzing Code Processors

Observation: current approaches ill-suited to today’s diverse transpilers

Fuzzer Cl:Language & C2:Minimal | C3:Upholds

Agnostic Lang. Spec. | Code Validity

AFL++ None
libFuzzer None
AFL-Comp-Fuzz None Fuzzer | Semantic Validity
Polyglot

/e CSmith
CSmith

Polyglot

YARPGen &

Takeaways: transpiler fuzzing must balance both generality and code validity

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Yeaseen Arafat 5

TeTRIS: Testing Transpilers Regardless of Input Source

Key idea: grammar-guided mutation with language-level semantic guardrails

Seed Input Programs /~ 1.ASTParsing &Lifting
l.c |
int funcl () {
intil=12; P
float f1=2.1;
. char ci='a"; F--% O/\. \.
S —xA|ys | \Basic:vol int i3=1995;
A —yA|zB (1nt:int, short, lon ¥ ./
Bz
Grammar and Semantics \ Input Source Neutral AST /

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Yeaseen Arafat

TeTRIS: Testing Transpilers Regardless of Input Source

Key idea: grammar-guided mutation with language-level semantic guardrails

Seed Input Programs

9:C

S—>xA|yS
A — yA|zB
B—z

Grammar and Semantics

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

-

-

1. AST Parsing & Lifting

s H—‘I,‘;’ .'/\o
2k AN

Y
[

Input Source Neutral AST

\

/

Yeaseen Arafat

K Targeted Mutators

-

(2. Structural Mutation \

« e
\..-
'

K Finalized AST

Intermediate AST /
/ 3. Mutation Resolution \

__|inti2= FIxmE

intil=12; (int)fl
float f1=2.1;

% il >> 2;

Scope Resolution /

17

TeTRIS: Testing Transpilers Regardless of Input Source

Key idea: grammar-guided mutation with language-level semantic guardrails
= Transpiler-specific bug oracles: transpiler crashes, non-runnable code, differential execution

Seed Input Programs / 1. AST Parsing & Lifting J/ 2. Structural Mutation
1€ .
j 2.¢ 3.C r) .
¢ =15 & e « e
f1=2.1
—> 1="; >» e De ° _> > P b °
S - xA 199¢
A — yA | zE [¢] @ « Do
B—oz =
Grammar and Semantics Input Source Neutral AST / \ Targeted Mutators Intermediate AST /
Transpiled Final Program / 4. Concretize Test Case \ // 3. Mutation Resolution
—
S - .
— int funcl () { int funct () {
N - intil=12;
B g < - nfrlia.tzilzit;f1 - -
\4 printf(i1,f1,i2); % il >> 2;
Differential Execution \ Instrumentation Finalized Source / \ Finalized AST Scope Resolution /

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Yeaseen Arafat

TeTRIS: Testing Transpilers Regardless of Input Source

Key idea: grammar-guided mutation with language-level semantic guardrails
= Transpiler-specific bug oracles: transpiler crashes, non-runnable code, differential execution

/if(p>@){ \

/if(p>0){ \

e 1fE: <= 100){
var = p; _ = _t +_
}
))
K()riginal C Code Snippey Q)st Initial Code Mutaticy
_/

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

Yeaseen Arafat

19

TeTRIS: Testing Transpilers Regardless of Input Source

Key idea: grammar-guided mutation with language-level semantic guardrails

= Transpiler-specific bug oracles: transpiler crashes, non-runnable code, differential execution
= Generated programs gradually cover deeper language syntax and semantic combinations

/ (p>0){ \ / (p>0){ \ /if(p>0){ \ G(IPG){ \

. (_ <=){ if (q+p <=100) if\(/q:p(;:g@){
- MES) ((float) (q+v)+
var = p; _= _t+ +_; vV = ptqtv; ((float) (p+qg+v));
} }
}) } ¥
KOriginal C Code Snippet/ Qost Initial Code Mutatioy @st Semantic Resolutioy ther Successive Mutatity

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Yeaseen Arafat

TeTRIS: Testing Transpilers Regardless of Input Source

Key idea: grammar-guided mutation with language-level semantic guardrails

= Transpiler-specific bug oracles: transpiler crashes, non-runnable code, differential execution
= Generated programs gradually cover deeper language syntax and semantic combinations

Fuzzer Core C Spec Go Spec | Haxe Spec
CSmith ~38.9K LoC 4 4
Polyglot ~7.0 K ~1.5 K b 4 X
TeTRIS ~5.6 K 811 LoC | 797 LoC | 785 LoC

Outcome: broad transpiler support with only minimal language specification

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Yeaseen Arafat 21

Evaluation: Overview

Fundamental questions:
1. Is TeTRIS capable of generating valid inputs?
2. Can TeTRIS more thoroughly test transpilers?
3. Does TeTRIS uncover more translation bugs?

Competing code processor fuzzers:
= CSmith (language-specific C compiler fuzzer)
= AFL++, AFL-Compiler-Fuzzer, Polyglot (gen.-purpose)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Yeaseen Arafat

22

Evaluation: Overview

Fundamental questions: Transpiler InLang. | Out Lang.
1. Is TeTRIS capable of generating valid inputs?
2. Can TeTRIS more thoroughly test transpilers? C2Rust C Rust
3. Does TeTRIS uncover more translation bugs? CxGo, C4g0 C GO
) Zig Translate-C C Zig
Competing code processor fuzzers:
= CSmith (language-specific C compiler fuzzer) Go2Hx Go Haxe
= AFL++ AFL-Compiler-Fuzzer, Polyglot (gen.-purpose) HxCpp Haxe Cr+
HxPy Haxe Python3

Benchmarked on seven transpilers spanning
six distinct language-to-language pairings
= Standard evaluation procedure (5 x 24hr trials each)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Yeaseen Arafat

Evaluation: Generated Code Validity

Measured mean generated code validity across all fuzzers per transpiler

= Proportion of each fuzzer's 24-hr corpora accepted as valid by each targeted transpiler
= Evaluated on transpilers compatible with grey-box fuzzing (CxGo, C4Go, C2Rust, HxCpp, HxPy)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Yeaseen Arafat 24

Evaluation: Generated Code Validity

Measured mean generated code validity across all fuzzers per transpiler

= Proportion of each fuzzer's 24-hr corpora accepted as valid by each targeted transpiler
= Evaluated on transpilers compatible with grey-box fuzzing (CxGo, C4Go, C2Rust, HxCpp, HxPy)

TeTRIS vs.

Metric CSmith

Code
Validity - 0.25x

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Yeaseen Arafat 25

Evaluation: Generated Code Validity

Measured mean generated code validity across all fuzzers per transpiler

= Proportion of each fuzzer's 24-hr corpora accepted as valid by each targeted transpiler
= Evaluated on transpilers compatible with grey-box fuzzing (CxGo, C4Go, C2Rust, HxCpp, HxPy)

TeTRIS vs. TeTRIS vs. TeTRIS vs. TeTRIS vs.

Metric CSmith Polyglot AFL-Comp-Fuzz AFL++

vidny | -0.25% | +524x | +27.42x | +30.69x

Takeaways: TeTRIS balances code validity and broad transpiler support
= Comparable performance to C-specific CSmith despite supporting many more languages

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Yeaseen Arafat 26

Evaluation: Transpiler Code Coverage

Measured mean transpiler code coverage for all fuzzers per transpiler

= Enumerated basic block coverage of transpiler binaries using AFL-QEMU binary tracing
= Evaluated on transpilers compatible with QEMU coverage tracing (CxGo, C2Rust, HxCpp, HxPy)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Yeaseen Arafat 27

Evaluation: Transpiler Code Coverage

Measured mean transpiler code coverage for all fuzzers per transpiler

= Enumerated basic block coverage of transpiler binaries using AFL-QEMU binary tracing
= Evaluated on transpilers compatible with QEMU coverage tracing (CxGo, C2Rust, HxCpp, HxPy)

TeTRIS vs.

Metric CSmith

COS/Z(::ge N 10°25%

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Yeaseen Arafat 28

Evaluation: Transpiler Code Coverage

Measured mean transpiler code coverage for all fuzzers per transpiler

= Enumerated basic block coverage of transpiler binaries using AFL-QEMU binary tracing
= Evaluated on transpilers compatible with QEMU coverage tracing (CxGo, C2Rust, HxCpp, HxPy)

TeTRIS vs. TeTRIS vs. TeTRIS vs. TeTRIS vs.

Metric CSmith Polyglot AFL-Comp-Fuzz AFL++

conrge | = 10.25% | +11.31% | + 23.62% | + 21.70%

Takeaways: TeTRIS probes more of transpilers’ overall translation logic
= Trades-off some transpiler-specific depth for covering a broader range of behaviors

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Yeaseen Arafat 29

Evaluation: Discovered Transpiler Bugs

Analyzed total unique bugs throughout all transpiler fuzzing campaigns

= Bug categories: transpiler crashes, post-translation crashes, divergent runtime outputs
= All bugs manually deduplicated and reported to their respective transpiler developers

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Yeaseen Arafat 30

Evaluation: Discovered Transpiler Bugs

Analyzed total unique bugs throughout all transpiler fuzzing campaigns

= Bug categories: transpiler crashes, post-translation crashes, divergent runtime outputs
= All bugs manually deduplicated and reported to their respective transpiler developers

Metric CSmith

Total
(old +new) 2

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Yeaseen Arafat 31

Evaluation: Discovered Transpiler Bugs

Analyzed total unique bugs throughout all transpiler fuzzing campaigns

= Bug categories: transpiler crashes, post-translation crashes, divergent runtime outputs
= All bugs manually deduplicated and reported to their respective transpiler developers

Metric CSmith Polyglot AFL-Comp-Fuzz AFL++ TeTRIS

(ol;li-o+t r?(lew) 2 0 0 0 1 6

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Yeaseen Arafat 32

Evaluation: Discovered Transpiler Bugs

Analyzed total unique bugs throughout all transpiler fuzzing campaigns

= Bug categories: transpiler crashes, post-translation crashes, divergent runtime outputs
= All bugs manually deduplicated and reported to their respective transpiler developers

Metric CSmith Polyglot AFL-Comp-Fuzz AFL++ TeTRIS
L
(ol;li-o+t r? ew) 2 0 0 0 1 6
l -
Found 0 0 0 0 12

Takeaways: TeTRIS’s diverse test cases expose more transpiler defects
= Since submission, all 12 TeTRIS-found new bugs are confirmed and/or fixed

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Yeaseen Arafat 33

Case Studies: TeTRIS-found Transpiler Bugs

CxGo #76: unhandled bool-to-float implicit type conversion
= (xGo adds external functions to accommodate Go’s lack of implicit type conversion

//' \\\ //;ar x float32 = 1.25 \\\

float x = 1.25;
X += 100 + float32(
int(libc.BoolToInt(4<4.5))

X += 100 + (4 < 4.5);
—_ |)

X += 9.9 + float32(

X += 9.9 + (4 < 4.5); float64(4<4.5)

_ Original C code / \) -

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Yeaseen Arafat

Case Studies: TeTRIS-found Transpiler Bugs

CxGo #76: unhandled bool-to-float implicit type conversion
= (xGo adds external functions to accommodate Go’s lack of implicit type conversion
= Although bool-to-integer conversions supported, CxGo missed conversions to floats

//, ‘\\ //;ar x float32 = 1.25 \\\

float x = 1.25;
X += 100 + float32(
int(libc.BoolToInt(4<4.5))

X += 100 + (4 < 4.5);
R

X += 9.9 + float32(

X += 9.9 + (4 < 4.5); float64(4<4.5)

)

\ Original C code/ k Uncompilable Go cody

Takeaways: real-world codebases span a wide range of type semantics
= TeTRIS's random programs surface mishandling of expected type-to-type conversions

SCHOOL OF COMPUTING Yeaseen Arafat 35

UNIVERSITY OF UTAH

Case Studies: TeTRIS-found Transpiler Bugs

Zig Translate-C #21871: mis-inclusion of unreachable code statements
= While unreachable code is permitted in C, it is strictly prohibited in the Zig language

//’ \\\ //;eturn blk: { \\\

+= -
return x y * 3, const ref = &x;

ref.* += y *@as(c_int,3);
v . break :blk ref.*;

return 0;

_ Original C code / _ -

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Yeaseen Arafat

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Case Studies: TeTRIS-found Transpiler Bugs

4 N

return x +=y * 3;
X++;

return 0;

\ Original C codej

Zig Translate-C #21871: mis-inclusion of unreachable code statements

While unreachable code is permitted in C, it is strictly prohibited in the Zig language
Zig Translate-C correctly prunes most unreachable statements, but wrongly kept these

//;eturn blk: { \\\

const ref = &x;
ref.* += y *@as(c_int,3);
break :blk ref.*;

Il

X += 1;

return 0;
Uncompilable Zig cody

Takeaways: transpilers’ internal code analyses are also error-prone

TeTRIS uncovers how these analyses fail toward enhancing transpilers’ reliability

Yeaseen Arafat

37

GO2Hx #179: non-equivalent comparisons between zeroed arrays

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

Case Studies: TeTRIS-found Transpiler Bugs

Go supports value-level array comparisons, while Haxe only by reference

a4 N

x := [4]int{0,0,0,0}

if x !'= [4]int{0,0,0,0} {
panic("ERR: unequal!")
}

k Original Go code (branch = FALSEy

-

var x = new Array<Int>
([0,0,0,0]);
if (
)<

throw "ERR: unequal!";

)
o

~

/

Yeaseen Arafat

38

Case Studies: TeTRIS-found Transpiler Bugs

Go2HXx #179: non-equivalent comparisons between zeroed arrays

= Go supports value-level array comparisons, while Haxe only by reference
= GOo2Hx fails to properly account for this, resulting in divergent executions

a4 N O N

x := [4]int{0,0,0,0} var ?[; o 6 gg;?y<I”t>
: : if I= new Array<Int>
if x 1= [4]int{e,0,0,0} { — ()(‘[@ o @W@])){y
\ panic("ERR: unequal!")) 4 throw "ERR: unequall”: v
}
\ Original Go code (branch = FALSEy \ Non-equivalent Haxe code (branch = TRUEy

Takeaways: transpilers need to resolve language-level feature differences
= TeTRIS's coverage of diverse code constructs surfaces subtle translation edge-cases

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Yeaseen Arafat

Conclusion: Why TeTRIS?

Transpiler bugs impede translation-oriented tasks

= Code migration, interoperability, and security retrofitting
= Hence, testing transpilers proactively is key to fixing them

Prior fuzzers are ineffective on today’s transpilers
= Language-specific fuzzers (e.g, CSmith) remain inflexible
= General-purpose fuzzers (e.g., Polyglot) face invalid code
= Hence, vast majority of transpiler logic remains untested

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Yeaseen Arafat

40

Conclusion: Why TeTRIS?

Transpiler bugs impede translation-oriented tasks

= Code migration, interoperability, and security retrofitting
= Hence, testing transpilers proactively is key to fixing them

Prior fuzzers are ineffective on today’s transpilers
= Language-specific fuzzers (e.g, CSmith) remain inflexible
= General-purpose fuzzers (e.g., Polyglot) face invalid code
= Hence, vast majority of transpiler logic remains untested

Our solution: TeTRIS

= The first fuzzer designed specifically for transpilers’ needs
= OQOutcome: effective fuzzing for today’s diverse transpilers,
spanning C-, Go-, and Haxe-targeting translation workflows

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Yeaseen Arafat

Key Results: N
5-30= higher validity
11-23% more coverage

12 new transpiler bugs

k(all since conﬁrmed)/

41

Thank you!

() github.com/FuturesLab/TeTRIS

Contact:
& vy.arafat@utah.edu

@yeaseen_
% @yeaseen.bsky.social

FU_URES

FUTURE TECHNOLOGY FOR USABLE, RELIABLE, &
EFFICIENT SECURITY OF SOFTWARE & SYSTEMS

TeTRIS

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Yeaseen Arafat

42

