
Yeaseen Arafat

TeTRIS: 
General-purpose Fuzzing for Translation Bugs

in Source-to-Source Code Transpilers
Yeaseen Arafat

University of Utah
Stefan Nagy

University of Utah



Yeaseen Arafat

￭ High-level goal: translate code from one programming language to another

2

pub unsafe extern "C" fn func() -> 
libc::c_int {
  let mut y: libc::c_int = 0;
  let mut x: libc::c_int = 0;
  let mut res: libc::c_int = 0;
   if y < 5
     { cur_blk = 1;  }
   else if x < 20
     { cur_blk = 2;  }
   else
     { cur_blk = 1;  }
   match cur_blk {
       1 => { res = x*y; }
       _ => {}
   } return res;
}

Original C code

Transpiler 
(e.g., C2Rust)

Translated Rust code

    int func(){
      int y, x, res;
      if (y < 5) {
          goto LABEL_RES;
      }
      if (x < 20) {
          goto LABEL_END;
      }
      LABEL_RES:
          res = x*y;
      LABEL_END:
          return res;
    }

Transpilers: Automated Cross-language Code Translation



Yeaseen Arafat

￭ High-level goal: translate code from one programming language to another
￭ An emerging backbone of modern translation-oriented software development tasks

3

Code InteroperabilitySoftware Migration Security Retrofitting

Transpilers: Automated Cross-language Code Translation



Yeaseen Arafat

￭ High-level goal: translate code from one programming language to another
￭ An emerging backbone of modern translation-oriented software development tasks
￭ Success of these development tasks often undermined by incorrect code translation

4

Downstream FailuresBuggy Transpilers Mis-translated Code

Transpilers: Automated Cross-language Code Translation



Yeaseen Arafat

￭ High-level goal: translate code from one programming language to another
￭ An emerging backbone of modern translation-oriented software development tasks
￭ Success of these development tasks often undermined by incorrect code translation

5

Downstream FailuresBuggy Transpilers Mis-translated Code

Problem: what kinds of translation errors do transpilers face in practice?

Transpilers: Automated Cross-language Code Translation



Yeaseen Arafat 6

￭ Manually distilled reported transpiler bugs into three distinct categories

Transpilers: Challenges to Successful Code Translation



Yeaseen Arafat 7

￭ Manually distilled reported transpiler bugs into three distinct categories
Bug Category Transpiler GitHub Issue No. & Error Description

Syntactic 
Mishandling

CxGo #42: Mis-included variable re-declaration

C2Go #848: Mis-recovered switch-case values

C2Nim #217: Mis-recovered struct members

Transpilers: Challenges to Successful Code Translation

if false{
    var x int = 5
    _ = x
    var x int = 6
    _ = x 
}

#define func(arg){  
    int x = arg; 
}
if (0) { 
    func(5);
    func(6);
}

Mis-translated Go

Original C code

Example:
CxGo #42



Yeaseen Arafat 8

￭ Manually distilled reported transpiler bugs into three distinct categories
Bug Category Transpiler GitHub Issue No. & Error Description

Syntactic 
Mishandling

CxGo #42: Mis-included variable re-declaration

C2Go #848: Mis-recovered switch-case values

C2Nim #217: Mis-recovered struct members

Type 
Conversion

C2Rust #486: Mis-recovered int→float conversion

Zig Translate-C #20005: Mis-recovered bool→int conversion

Zig Translate-C #20638: Mis-recovered int→bool conversion

Transpilers: Challenges to Successful Code Translation

if(@as(c_int,2))
    @as(c_int,4);
else
    @as(c_int,8); 

#define func(x) (

    2 ? 4 : 8

)
Original C code

Mis-translated Zig

Example:
Zig #20005



Yeaseen Arafat 9

￭ Manually distilled reported transpiler bugs into three distinct categories
Bug Category Transpiler GitHub Issue No. & Error Description

Syntactic 
Mishandling

CxGo #42: Mis-included variable re-declaration

C2Go #848: Mis-recovered switch-case values

C2Nim #217: Mis-recovered struct members

Type 
Conversion

C2Rust #486: Mis-recovered int→float conversion

Zig Translate-C #20005: Mis-recovered bool→int conversion

Zig Translate-C #20638: Mis-recovered int→bool conversion

Code 
Fragment 
Omissions

C2Nim #240: Unrecovered standard int types

C2Rust #896: Unrecovered call instruction

Go2Hx #19: Unrecovered array size

HxCpp #225: Unrecovered optional int arguments

Transpilers: Challenges to Successful Code Translation

fn func()-> c_int {
    g = 1 as c_int;
    return g; 
}
fn main() {
    // -func(); 
} Mis-translated Rust

int func() { 
    g = 1;
    return g; 
}
int main() {   
    -func(); 
} Original C code

Example:
C2Rust #896



Yeaseen Arafat 10

￭ Manually distilled reported transpiler bugs into three distinct categories
Bug Category Transpiler GitHub Issue No. & Error Description

Syntactic 
Mishandling

CxGo #42: Mis-included variable re-declaration

C2Go #848: Mis-recovered switch-case values

C2Nim #217: Mis-recovered struct members

Type 
Conversion

C2Rust #486: Mis-recovered int→float conversion

Zig Translate-C #20005: Mis-recovered bool→int conversion

Zig Translate-C #20638: Mis-recovered int→bool conversion

Code 
Fragments

C2Nim #240: Unrecovered standard int types

C2Rust #896: Unrecovered call instruction

Go2Hx #19: Unrecovered array size

HxCpp #225: Unrecovered optional int arguments

Transpilers: Challenges to Successful Code Translation

fn func()-> c_int {
    g = 1 as c_int;
    return g; 
}
fn main() {
    // -func(); 
} Mis-translated Rust

int func() { 
    g = 1;
    return g; 
}
int main() {   
    -func(); 
} Original C code

Example:
C2Rust #896

Motivation: how can mis-translation errors be uncovered automatically?



Yeaseen Arafat 11

Fuzzer

AFL++

libFuzzer

AFL-Comp-Fuzz

Polyglot

CSmith

YARPGen

Prior Work: Approaches for Fuzzing Code Processors

￭ Observation: current approaches ill-suited to today’s diverse transpilers



Yeaseen Arafat 12

Fuzzer C1: Language 
Agnostic

AFL++ ✔

libFuzzer ✔

AFL-Comp-Fuzz ✔

Polyglot ✔

CSmith ✘

YARPGen ✘

Supports only C 
(e.g., Clang, GCC)

Any language 
(e.g., C, Py, Go)

Prior Work: Approaches for Fuzzing Code Processors

￭ Observation: current approaches ill-suited to today’s diverse transpilers



Yeaseen Arafat 13

Fuzzer C1: Language 
Agnostic

C2: Minimal 
Lang. Spec.

AFL++ ✔ None
libFuzzer ✔ None
AFL-Comp-Fuzz ✔ None
Polyglot ✔ ✔

CSmith ✘ ✘

YARPGen ✘ ✘

Supports only C 
(e.g., Clang, GCC)

Fuzzer Core Spec

CSmith ~38.9 K LoC

Polyglot ~7.0 K ~1.5 K

Prior Work: Approaches for Fuzzing Code Processors

￭ Observation: current approaches ill-suited to today’s diverse transpilers



Yeaseen Arafat 14

Fuzzer C1: Language 
Agnostic

C2: Minimal 
Lang. Spec.

C3: Upholds 
Code Validity

AFL++ ✔ None ✘

libFuzzer ✔ None ✘

AFL-Comp-Fuzz ✔ None ✘

Polyglot ✔ ✔ ✘

CSmith ✘ ✘ ✔

YARPGen ✘ ✘ ✔

Supports only C 
(e.g., Clang, GCC)

Fuzzer Semantic Validity

CSmith ~100%

Polyglot ~20%

Prior Work: Approaches for Fuzzing Code Processors

￭ Observation: current approaches ill-suited to today’s diverse transpilers



Yeaseen Arafat 15

Fuzzer C1: Language 
Agnostic

C2: Minimal 
Lang. Spec.

C3: Upholds 
Code Validity

AFL++ ✔ None ✘

libFuzzer ✔ None ✘

AFL-Comp-Fuzz ✔ None ✘

Polyglot ✔ ✔ ✘

CSmith ✘ ✘ ✔

YARPGen ✘ ✘ ✔

￭ Takeaways: transpiler fuzzing must balance both generality and code validity

Supports only C 
(e.g., Clang, GCC)

Fuzzer Semantic Validity

CSmith ~100%

Polyglot ~20%

Prior Work: Approaches for Fuzzing Code Processors

￭ Observation: current approaches ill-suited to today’s diverse transpilers



Yeaseen Arafat

￭ Key idea: grammar-guided mutation with language-level semantic guardrails

TeTRIS: Testing Transpilers Regardless of Input Source

16



Yeaseen Arafat

￭ Key idea: grammar-guided mutation with language-level semantic guardrails

TeTRIS: Testing Transpilers Regardless of Input Source

17



Yeaseen Arafat

￭ Key idea: grammar-guided mutation with language-level semantic guardrails
￭ Transpiler-specific bug oracles: transpiler crashes, non-runnable code, differential execution

TeTRIS: Testing Transpilers Regardless of Input Source

18



Yeaseen Arafat

￭ Key idea: grammar-guided mutation with language-level semantic guardrails
￭ Transpiler-specific bug oracles: transpiler crashes, non-runnable code, differential execution

if(p>0){

   p++;

   var = p;

}

if(p>0){
  if(_ <= 100){
   _--;          
   _ = _+ +_;    
   }             
}

Original C Code Snippet Post Initial Code Mutation

TeTRIS: Testing Transpilers Regardless of Input Source

19



Yeaseen Arafat

￭ Key idea: grammar-guided mutation with language-level semantic guardrails
￭ Transpiler-specific bug oracles: transpiler crashes, non-runnable code, differential execution
￭ Generated programs gradually cover deeper language syntax and semantic combinations

if(p>0){

   p++;

   var = p;

}

if(p>0){
  if(_ <= 100){
   _--;          
   _ = _+ +_;    
   }             
}

if(p>0){
  if (q+p <=100){
   v--;
   v = p+q+v;
   }
}

if(p>0){
  if(q+p <=100){
    v = (int)
    ((float)(q+v)+
    ((float)(p+q+v));
  }
}

Original C Code Snippet Post Initial Code Mutation Post Semantic Resolution After Successive Mutation

TeTRIS: Testing Transpilers Regardless of Input Source

20



Yeaseen Arafat

if(p>0){
  if(q+p <=100){
    v = (int)
    ((float)(q+v)+
    ((float)(p+q+v));
  }
}

￭ Key idea: grammar-guided mutation with language-level semantic guardrails
￭ Transpiler-specific bug oracles: transpiler crashes, non-runnable code, differential execution
￭ Generated programs gradually cover deeper language syntax and semantic combinations

if(p>0){

   p++;

   var = p;

}

if(p>0){
  if(_ <= 100){
   _--;          
   _ = _+ +_;    
   }             
}

if(p>0){
  if (q+p <=100){
   v--;
   v = p+q+v;
   }
}

Original C Code Snippet Post Initial Code Mutation Post Semantic Resolution After Successive Mutation

￭ Outcome: broad transpiler support with only minimal language specification

Fuzzer Core C Spec Go Spec Haxe Spec

CSmith ~38.9K LoC ✘ ✘

Polyglot  ~7.0 K ~1.5 K ✘ ✘

TeTRIS  ~5.6 K 811 LoC 797 LoC 785 LoC

TeTRIS: Testing Transpilers Regardless of Input Source

21



Yeaseen Arafat

Evaluation: Overview

￭ Fundamental questions:
1. Is TeTRIS capable of generating valid inputs?
2. Can TeTRIS more thoroughly test transpilers?
3. Does TeTRIS uncover more translation bugs?

￭ Competing code processor fuzzers:
￭ CSmith (language-specific C compiler fuzzer)
￭ AFL++, AFL-Compiler-Fuzzer, Polyglot (gen.-purpose)

22



Yeaseen Arafat

Evaluation: Overview

￭ Fundamental questions:
1. Is TeTRIS capable of generating valid inputs?
2. Can TeTRIS more thoroughly test transpilers?
3. Does TeTRIS uncover more translation bugs?

￭ Competing code processor fuzzers:
￭ CSmith (language-specific C compiler fuzzer)
￭ AFL++, AFL-Compiler-Fuzzer, Polyglot (gen.-purpose)

￭ Benchmarked on seven transpilers spanning 
six distinct language-to-language pairings
￭  Standard evaluation procedure (5 × 24hr trials each)

Transpiler In Lang. Out Lang.

C2Rust C Rust

CxGo, C4go C Go

Zig Translate-C C Zig

Go2Hx Go Haxe

HxCpp Haxe C++

HxPy Haxe Python3

23



Yeaseen Arafat

Evaluation: Generated Code Validity

￭ Measured mean generated code validity across all fuzzers per transpiler
￭ Proportion of each fuzzer’s 24-hr corpora accepted as valid by each targeted transpiler
￭ Evaluated on transpilers compatible with grey-box fuzzing (CxGo, C4Go, C2Rust, HxCpp, HxPy)

24



Yeaseen Arafat

Evaluation: Generated Code Validity

￭ Measured mean generated code validity across all fuzzers per transpiler
￭ Proportion of each fuzzer’s 24-hr corpora accepted as valid by each targeted transpiler
￭ Evaluated on transpilers compatible with grey-box fuzzing (CxGo, C4Go, C2Rust, HxCpp, HxPy)

Metric TeTRIS vs. 
CSmith

Code 
Validity - 0.25× 

25



Yeaseen Arafat

Evaluation: Generated Code Validity

￭ Measured mean generated code validity across all fuzzers per transpiler
￭ Proportion of each fuzzer’s 24-hr corpora accepted as valid by each targeted transpiler
￭ Evaluated on transpilers compatible with grey-box fuzzing (CxGo, C4Go, C2Rust, HxCpp, HxPy)

Metric TeTRIS vs. 
CSmith

TeTRIS vs. 
Polyglot

TeTRIS vs. 
AFL-Comp-Fuzz

TeTRIS vs.
AFL++

Code 
Validity - 0.25× + 5.24× + 27.42× + 30.69× 

￭ Takeaways: TeTRIS balances code validity and broad transpiler support
￭  Comparable performance to C-specific CSmith despite supporting many more languages

26



Yeaseen Arafat

Evaluation: Transpiler Code Coverage

￭ Measured mean transpiler code coverage for all fuzzers per transpiler
￭ Enumerated basic block coverage of transpiler binaries using AFL-QEMU binary tracing 
￭ Evaluated on transpilers compatible with QEMU coverage tracing (CxGo, C2Rust, HxCpp, HxPy)

27



Yeaseen Arafat

Evaluation: Transpiler Code Coverage

￭ Measured mean transpiler code coverage for all fuzzers per transpiler
￭ Enumerated basic block coverage of transpiler binaries using AFL-QEMU binary tracing 
￭ Evaluated on transpilers compatible with QEMU coverage tracing (CxGo, C2Rust, HxCpp, HxPy)

Metric TeTRIS vs. 
CSmith

Code 
Coverage - 10.25% 

28



Yeaseen Arafat

Evaluation: Transpiler Code Coverage

￭ Measured mean transpiler code coverage for all fuzzers per transpiler
￭ Enumerated basic block coverage of transpiler binaries using AFL-QEMU binary tracing  
￭ Evaluated on transpilers compatible with QEMU coverage tracing (CxGo, C2Rust, HxCpp, HxPy)

￭ Takeaways: TeTRIS probes more of transpilers’ overall translation logic
￭ Trades-off some transpiler-specific depth for covering a broader range of behaviors

Metric TeTRIS vs. 
CSmith

TeTRIS vs. 
Polyglot

TeTRIS vs. 
AFL-Comp-Fuzz

TeTRIS vs.
AFL++

Code 
Coverage - 10.25% + 11.31% + 23.62% + 21.70% 

29



Yeaseen Arafat

Evaluation: Discovered Transpiler Bugs

￭ Analyzed total unique bugs throughout all transpiler fuzzing campaigns
￭ Bug categories: transpiler crashes, post-translation crashes, divergent runtime outputs
￭ All bugs manually deduplicated and reported to their respective transpiler developers

30



Yeaseen Arafat

Evaluation: Discovered Transpiler Bugs

￭ Analyzed total unique bugs throughout all transpiler fuzzing campaigns
￭ Bug categories: transpiler crashes, post-translation crashes, divergent runtime outputs
￭ All bugs manually deduplicated and reported to their respective transpiler developers

31

Metric CSmith

Total 
(old +new) 2



Yeaseen Arafat

Evaluation: Discovered Transpiler Bugs

￭ Analyzed total unique bugs throughout all transpiler fuzzing campaigns
￭ Bug categories: transpiler crashes, post-translation crashes, divergent runtime outputs
￭ All bugs manually deduplicated and reported to their respective transpiler developers

32

Metric CSmith Polyglot AFL-Comp-Fuzz AFL++ TeTRIS

Total 
(old +new) 2 0 0 0 16



Yeaseen Arafat

Evaluation: Discovered Transpiler Bugs

￭ Analyzed total unique bugs throughout all transpiler fuzzing campaigns
￭ Bug categories: transpiler crashes, post-translation crashes, divergent runtime outputs
￭ All bugs manually deduplicated and reported to their respective transpiler developers

Metric CSmith Polyglot AFL-Comp-Fuzz AFL++ TeTRIS

Total 
(old +new) 2 0 0 0 16

Newly- 
Found 0 0 0 0 12

￭ Takeaways: TeTRIS’s diverse test cases expose more transpiler defects
￭ Since submission, all 12 TeTRIS-found new bugs are confirmed and/or fixed

33



Yeaseen Arafat

Case Studies: TeTRIS-found Transpiler Bugs

￭ CxGo #76: unhandled bool-to-float implicit type conversion
￭ CxGo adds external functions to accommodate Go’s lack of implicit type conversion

float x = 1.25;

x += 100 + (4 < 4.5);

x += 9.9 + (4 < 4.5);

var x float32 = 1.25
x += 100 + float32(          .

   int(libc.BoolToInt(4<4.5)).

)                            .

x += 9.9 + float32(          .

   float64(4<4.5)            .

)                            .

Original C code

34



Yeaseen Arafat

Case Studies: TeTRIS-found Transpiler Bugs

￭ CxGo #76: unhandled bool-to-float implicit type conversion
￭ CxGo adds external functions to accommodate Go’s lack of implicit type conversion
￭ Although bool-to-integer conversions supported, CxGo missed conversions to floats

float x = 1.25;

x += 100 + (4 < 4.5);

x += 9.9 + (4 < 4.5);

var x float32 = 1.25
x += 100 + float32(          .

   int(libc.BoolToInt(4<4.5)).

)                            .

x += 9.9 + float32(          .

   float64(4<4.5)            .

)                            .

Original C code Uncompilable Go code

￭ Takeaways: real-world codebases span a wide range of type semantics 
￭ TeTRIS’s random programs surface mishandling of expected type-to-type conversions

35



Yeaseen Arafat

Case Studies: TeTRIS-found Transpiler Bugs

￭ Zig Translate-C #21871: mis-inclusion of unreachable code statements
￭ While unreachable code is permitted in C, it is strictly prohibited in the Zig language 

return x += y * 3;

x++;

return 0;

return blk: {
    const ref = &x;
    ref.* += y *@as(c_int,3);
    break :blk ref.*;
};

Original C code

36



Yeaseen Arafat

Case Studies: TeTRIS-found Transpiler Bugs

￭ Zig Translate-C #21871: mis-inclusion of unreachable code statements
￭ While unreachable code is permitted in C, it is strictly prohibited in the Zig language 
￭ Zig Translate-C correctly prunes most unreachable statements, but wrongly kept these

return x += y * 3;

x++;

return 0;

return blk: {
    const ref = &x;
    ref.* += y *@as(c_int,3);
    break :blk ref.*;
};
x += 1;
return 0;

Original C code Uncompilable Zig code

￭ Takeaways: transpilers’ internal code analyses are also error-prone
￭ TeTRIS uncovers how these analyses fail toward enhancing transpilers’ reliability

37



Yeaseen Arafat

Case Studies: TeTRIS-found Transpiler Bugs

￭ Go2Hx #179: non-equivalent comparisons between zeroed arrays 
￭ Go supports value-level array comparisons, while Haxe only by reference 

x := [4]int{0,0,0,0}

if x != [4]int{0,0,0,0} {
    panic("ERR: unequal!")
}

var x = new Array<Int>
    ([0,0,0,0]);
if (
               ){
    throw "ERR: unequal!";
}

Original Go code (branch = FALSE)

38



Yeaseen Arafat

Case Studies: TeTRIS-found Transpiler Bugs

￭ Go2Hx #179: non-equivalent comparisons between zeroed arrays 
￭ Go supports value-level array comparisons, while Haxe only by reference 
￭ Go2Hx fails to properly account for this, resulting in divergent executions

x := [4]int{0,0,0,0}

if x != [4]int{0,0,0,0} {
    panic("ERR: unequal!")
}

var x = new Array<Int>
    ([0,0,0,0]);
if (x != new Array<Int>.

    ([0,0,0,0])){      .

    throw "ERR: unequal!";
}

Original Go code (branch = FALSE) Non-equivalent Haxe code (branch = TRUE)

￭ Takeaways: transpilers need to resolve language-level feature differences 
￭ TeTRIS’s coverage of diverse code constructs surfaces subtle translation edge-cases

✘ ✔

39



Yeaseen Arafat

Conclusion: Why TeTRIS?

￭ Transpiler bugs impede translation-oriented tasks
￭ Code migration, interoperability, and security retrofitting
￭ Hence, testing transpilers proactively is key to fixing them

￭ Prior fuzzers are ineffective on today’s transpilers
￭ Language-specific fuzzers (e.g., CSmith) remain inflexible
￭ General-purpose fuzzers (e.g., Polyglot) face invalid code
￭ Hence, vast majority of transpiler logic remains untested

40



Yeaseen Arafat

Conclusion: Why TeTRIS?

￭ Transpiler bugs impede translation-oriented tasks
￭ Code migration, interoperability, and security retrofitting
￭ Hence, testing transpilers proactively is key to fixing them

￭ Prior fuzzers are ineffective on today’s transpilers
￭ Language-specific fuzzers (e.g., CSmith) remain inflexible
￭ General-purpose fuzzers (e.g., Polyglot) face invalid code
￭ Hence, vast majority of transpiler logic remains untested

￭ Our solution: TeTRIS
￭ The first fuzzer designed specifically for transpilers’ needs
￭ Outcome: effective fuzzing for today’s diverse transpilers, 

spanning C-, Go-, and Haxe-targeting translation workflows 

Key Results:
5–30× higher validity

11–23% more coverage

12 new transpiler bugs
(all since confirmed)

41



Yeaseen Arafat 42

Thank you!
      github.com/FuturesLab/TeTRIS

Contact:  
      y.arafat@utah.edu
      @yeaseen_
      @yeaseen.bsky.social


