Bin2Wrong:

A Unified Fuzzing Framework for Uncovering
Semantic Errors in Binary-to-C Decompilers

Zao Yang Stefan Nagy
University of Utah University of Utah

FU_URES

FUTURE TECHNOLGY FOR USABLE, RELIABLE, &
EFFICIENT SECURITY OF SOFTWARE & SYSTEMS

SCHOOL OF COMPUTING
UUUUUUUUUUUUUUU

Zao Yang

Decompilers: Critical to Software & Systems

int funcl(int x) {
int result = 9;
if (x > 108) {
result = x * 2;
} else {
result = x + 5;

}

for (int i = 0; i < 3; i++) {
result += i;

}

High-level goal: recover equivalent C code from compiled binary artifacts

ey —
. s

Compiled Binaries Decompilers Recovered C Code

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Zao Yang

Decompilers: Critical to Software & Systems

High-level goal: recover equivalent C code from compiled binary artifacts
= Fundamental to downstream tasks that center on source-unavailable components

Proprietary Software Obfuscated Binary Commercial Software
Performance Tuning Malware Analysis Vulnerability Discovery

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Zao Yang

Decompilers: Critical to Software & Systems

High-level goal: recover equivalent C code from compiled binary artifacts

= Fundamental to downstream tasks that center on source-unavailable components
= Success of these downstream tasks often undermined by incorrect decompilation

@G —_ <A/> — — [FA“:\

Buggy Decompilers Wrong Semantics Misled Users Unsuccessful Tasks

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Zao Yang

Decompilers: Critical to Software & Systems

High-level goal: recover equivalent C code from compiled binary artifacts

= Fundamental to downstream tasks that center on source-unavailable components
= Success of these downstream tasks often undermined by incorrect decompilation

@ K

Buggy Decompilers Wrong Semantics Misled Users Unsuccessful Tasks

</>

[Problem: what factors chiefly influence decompilation errors? J

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Zao Yang

Decompilers: Challenges to Accurate Decompilation

Manually distilled 64 prior decompiler bugs into four distinct factors

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Origin(s)

Affected Decompilers

Instructions

Ghidra [1], Radare2 [2], Reko [3], RetDec [4, 5]

Refinement Angr [6, 7], Binary Ninja [8, 9, 10], RetDec [11]

If / Else Binary Ninja [12, 13, 14], Ghidra [15], RetDec [16, 17]
Loops Angr [18, 19, 20], Binary Ninja [21, 22], Reko [23]

Goto Angr [24, 25], Binary Ninja [26], Reko [27], RetDec [28]
Switches Binary Ninja [29, 30, 31], Radare2 [32], RetDec [33]
Arguments Angr [34, 35, 36], Binary Ninja [37, 38, 39, 40]
Variables Angr [41, 42], Binary Ninja [43], Ghidra [44, 45, 46]
Literals Angr [47], Binary Ninja [48], Ghidra [49, 50], Reko [51]

Compilers, Opts

Angr [52, 53, 54], Binary Ninja [55], Ghidra [56, 57]

Executable Formats

Angr [58], Binary Ninja [59, 60, 61], Ghidra [62, 63]

) ==

Zao Yang

https://github.com/NationalSecurityAgency/ghidra/issues/6528
https://github.com/radareorg/radare2/issues/4422
https://github.com/uxmal/reko/issues/1152
https://github.com/avast/retdec/issues/293
https://github.com/avast/retdec/issues/724
https://github.com/angr/angr/issues/3271
https://github.com/angr/angr/issues/4573
https://github.com/Vector35/binaryninja-api/issues/4110
https://github.com/Vector35/binaryninja-api/issues/4252
https://github.com/Vector35/binaryninja-api/issues/3081
https://github.com/avast/retdec/issues/717
https://github.com/Vector35/binaryninja-api/issues/1789
https://github.com/Vector35/binaryninja-api/issues/4223
https://github.com/Vector35/binaryninja-api/issues/4223
https://github.com/NationalSecurityAgency/ghidra/issues/288
https://github.com/avast/retdec/issues/375
https://github.com/avast/retdec/issues/83
https://github.com/angr/angr/issues/2915
https://github.com/angr/angr/issues/3702
https://github.com/angr/angr/issues/4082
https://github.com/Vector35/binaryninja-api/issues/1581
https://github.com/Vector35/binaryninja-api/issues/2824
https://github.com/uxmal/reko/issues/1149
https://github.com/angr/angr/issues/4358
https://github.com/angr/angr/issues/4420
https://github.com/Vector35/binaryninja-api/issues/4368
https://github.com/uxmal/reko/issues/529
https://github.com/avast/retdec/issues/673
https://github.com/Vector35/binaryninja-api/issues/1434
https://github.com/Vector35/binaryninja-api/issues/1791
https://github.com/Vector35/binaryninja-api/issues/2824
https://github.com/radareorg/radare2/issues/17036
https://github.com/avast/retdec/issues/669
https://github.com/angr/angr/issues/2914
https://github.com/angr/angr/issues/3737
https://github.com/angr/angr/issues/3992
https://github.com/Vector35/binaryninja-api/issues/3186
https://github.com/Vector35/binaryninja-api/issues/4692
https://github.com/Vector35/binaryninja-api/issues/4971
https://github.com/Vector35/binaryninja-api/issues/5009
https://github.com/angr/angr/issues/3432
https://github.com/angr/angr/issues/3703
https://github.com/Vector35/binaryninja-api/issues/4800
https://github.com/NationalSecurityAgency/ghidra/issues/5900
https://github.com/NationalSecurityAgency/ghidra/issues/6119
https://github.com/NationalSecurityAgency/ghidra/issues/6488
https://github.com/angr/angr/issues/2911
https://github.com/Vector35/binaryninja-api/issues/3719
https://github.com/NationalSecurityAgency/ghidra/issues/778
https://github.com/NationalSecurityAgency/ghidra/issues/6708
https://github.com/uxmal/reko/issues/1149
https://github.com/angr/angr/issues/2454
https://github.com/angr/angr/issues/2914
https://github.com/angr/angr/issues/3512
https://github.com/Vector35/binaryninja-api/issues/1074
https://github.com/NationalSecurityAgency/ghidra/issues/4983
https://github.com/NationalSecurityAgency/ghidra/issues/6648
https://github.com/angr/angr/issues/3377
https://github.com/Vector35/binaryninja-api/issues/3191
https://github.com/Vector35/binaryninja-api/issues/4977
https://github.com/Vector35/binaryninja-api/issues/5650
https://github.com/NationalSecurityAgency/ghidra/issues/3146
https://github.com/NationalSecurityAgency/ghidra/issues/3146

Decompilers: Challenges to Accurate Decompilation

Manually distilled 64 prior decompiler bugs into four distinct factors

int vO =
divide(nmr,dnr);
word32 vO1 =
sub_4a(v42,v13);

Opaqueness of
Source Semantics

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Zao Yang

Decompilers: Challenges to Accurate Decompilation

Manually distilled 64 prior decompiler bugs into four distinct factors

4 N
= mov eax, edi
() ; add eax, eax
)) \
s N
mov eax, edi %
shl eax
\ y,
s ™
- mov eax, edi
()), shl eax, 9x1 m
\ y,

Opaqueness of Patterns among
Different Compilers

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Zao Yang

Decompilers: Challenges to Accurate Decompilation

Manually distilled 64 prior decompiler bugs into four distinct factors

. g for (i=0:;i<3;i++)
(nmr, dnr); GCC ali]--;

_ al@]--;
R . al1]--;
(,) ; et al2]--:

Opaqueness of Patterns among Layout-altering
Code Optimizations

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Zao Yang

Decompilers: Challenges to Accurate Decompilation

Manually distilled 64 prior decompiler bugs into four distinct factors

/E\/ PR
ELF Mach-0
Header Header
Program Loads
Header Commands
. text Section
.rodata Table
Section _TEXT
Table _DATA

Differences in
Executable Formats

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Zao Yang

Decompilers: Challenges to Accurate Decompilation

Manually distilled 64 prior decompiler bugs into four distinct factors
= Root causes stem not just from individual factors—but combinations as well

if (var !'= O0xF) if (x < 1.5) 0.00000000
if (0xF '= OxF) if (1.5 < x) 0.0000000023283
Incorrect if condition Mi-swapped operands Erroneous float value
void myFunc (int a, float b) return tailFunc (input) ;
void myFunc(int a) return 0;
Missed float argument in PE binaries Dropped call in tailcall optimization

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Zao Yang

Decompilers: Challenges to Accurate Decompilation

Manually distilled 64 prior decompiler bugs into four distinct factors
= Root causes stem not just from individual factors—but combinations as well

if (var '= OxF) if (x < 1.5) 0.00000000
if (OxF '= OxF) if (1.5 < x) 0.0000000023283
Incorrect if condition Mi-swapped Erroneous value
void myFunc (int a, float b) return tailFunc (input) ;
void myFunc (int a) return O;
Missed argument in PE binaries Dropped in optimization

Preventing such errors demands thorough testing along these factors

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Zao Yang

12

Prior Work: Automated Decompiler Testing

Problem: prior approaches only marginally explore source & compilation
= Hardcoded to limited source constructs, specific compilers/optimizations, and just ELF

approach Source Construct Diversity Compilation Configuration Diversity Decompiler
Expressions | Control Flows | Data Compilers | Optimizations ELF = PE | Macho |Agnostic
DecFuzzer v F N: 1 x vV X X v
Cornucopia v v v 2 v vV | X 4 v
D-Helix v v N: 2 “F vV | X X X
DSmith v N E 1 “F vV | X) 4 v

Key: ¢ =fully support, ¥ =no support, “F = limited constrained support

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Zao Yang 13

Prior Work: Automated Decompiler Testing

Problem: prior approaches only marginally explore source & compilation
= Hardcoded to limited source constructs, specific compilers/optimizations, and just ELF

Motivation: how can fuzzing systematically explore these
individual binary factors and their many combinations?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Zao Yang 14

Our Solution: Bin2Wrong

Idea: mutate source code, compilers, optimizations, and format altogether

= Backbone: multi-dimensional test case format
= Mutate compilation configuration via byte flips
= Mutate source layout via AST-level mutations

Out-of-the-box support for:
= Compilers: GCC, Clang, ICX, TCC, AppleClang, MSVC
= Optimizations: 5,183 total across all compilers
= Formats: Linux ELF, MacOS MachO, Windows PE
= Source: all C constructs incl. strings/floats/gotos

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Zao Yang

0000:
0001:
0002:
0003:
0004:
2047:

2048:

NNNN:

v/ Compiler: MSVC \

v [fp:fast

X

v/ [Qsafe_fp_loads
X

v/ ljumptablerdata

. void func 1 () {
long v1 = 1234567;
goto LABEL_SWITCH;
. LABEL SWITCH:

if (vl == 123)
vl--;

7

|- Compiler

= Source

15

Our Solution: Bin2Wrong

Idea: mutate source code, compilers, optimizations, and format altogether

v -falign-functions
v -falign-jumps

ELF s | PE32
(Linux) oneAPI .‘(WindOWS));-fauto-inc-dec
M} Mach-o i : -fcaller-saves
- = (MacOS) X

Mutated Compiler & Executable Format Selection — Mutated Opts Set

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Zao Yang

Idea: mutate source code, compilers, optimizations, and format altogether

ELF 2 (=)

Linux 4

() oneAPI - |
a N

\ V'

Our Solution: Bin2Wrong

PE32
(Windows)

Mach-O [o2

(MacOS) ‘

Mutated Compiler & Executable Format Selection

-falign-functions

-falign-jumps

-fauto-inc-dec

-fcaller-saves

Mutated Opts Set

p
................................ /
01. void func_1 (){)] 01. wvoid func_1 (){
02. long vl = 1234567; w 5 02. long vl = OXFFFFF;
03. goto LABEL_SWITCH; ; 03 goto LABEL_BRANCH;
04. LABEL_BRANCH: . ; 04. LABEL_BRANCH:
05. if (vl == 123) libClang 05. if (vl <= 123)
06. vl--; AST APIL 06. vl-—;
07. LABEL_SWITCH: [N\ oo 07. LABEL_SWITCH:
08. switch(vl){ - — 08. switch(13){
09. case 13: v 09. case 13:
ﬂ } Ll X Insert Loop Break 1?) vl = v1%37;
’ 4l Update Data Value ’
Original Source Source-level Mutators Mutated Source
Y
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

Zao Yang

17

Our Solution: Bin2Wrong

Idea: mutate source code, compilers, optimizations, and format altogether

O/t

Decompile Binary, Fix Syntax, and Recompile Binary

= WENLIP

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Zao Yang

18

Our Solution: Bin2Wrong

Idea: mutate source code, compilers, optimizations, and format altogether

by

I Differential Testing via State Equivalence I
Orig Dec
i E\/ Source |
v EEEEx —> —>
v3 / b, Opt Flags

Examine Data State Divergences and Minimize PoC

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Zao Yang

19

Our Solution: Bin2Wrong

Idea: mutate source code, compilers, optimizations, and format altogether

Approach Source Construct Diversity Compilation Configuration Diversity Decompiler
Expressions | Control Flows | Data | Compilers | Optimizations | ELF | PE | MachO Agnostic

DecFuzzer E E 1 X X X

Cornucopia X X

D-Helix ¥ E X X X

DSmith 1 : X X

Bin2Wrong (4 v v 6 5183 v | v v v

By maximizing source and compilation diversity, Bin2Wrong enables
the most thorough evaluation of decompilation correctness to date.

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Zao Yang

Evaluation: Overview

Fundamental questions:
= Does Bin2Wrong's unified mutation
attain greater binary diversity?
= Can Bin2Wrong-generated binaries
test more decompiler internals?
= Will Bin2Wrong's binaries discover
more decompilation bugs?

Competing decompiler fuzzers:

= Corncopia (mutates optimizations)
= DecFuzzer (mutates source code)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Angr @ Radare2
Open-source
. @ Relyze RetDec
Decompilers
@ Reko . Rev.Ng

Commercial : .
, Binary Ninja
Decompiler

Benchmarked Decompilers

Zao Yang

21

Evaluation: Binary Diversity

Measured mean binary-to-binary diversity across 10,000 binaries
= Similarity scoring calculated via three state-of-the-art diffing algorithms

Diffing Algorithms

BinDiff

(zynamics’s Graph-Based)

Radiff2-M

(Eugene W. Myers’ O(ND))

Radiff2-L

(Levenshtein’s Edit Distance)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Zao Yang

Evaluation: Binary Diversity

Measured mean binary-to-binary diversity across 10,000 binaries
= Similarity scoring calculated via three state-of-the-art diffing algorithms

Diffing Algorithms BmZWrong. Bin2Wrong
vs. Cornucopia vs. DecFuzzer
Bin it +9,398 X +16.189 X
(zynamics’s Graph-Based) ° °
Radiff2-M
(Eugene W. Myers’ O(ND)) +8’11 9 x +1 50941 X
Radiff2-L
(Levenshtein’s Edit Distance) +6'131 x +150089 x

Takeaways: Bin2Wrong's unified mutation greatly increases binary diversity

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Zao Yang

Evaluation: Decompiler Code Coverage

Measured mean decompiler code coverage across 24-hour fuzzing trials
= Computed basic block coverage via the AFL-QEMU-Cov utility

Bin2Wrong Bin2Wrong
vs. Cornucopia vs. DecFuzzer

Basic Block Coverage +1 6% .|.32%

Metrics

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Zao Yang

Evaluation: Decompiler Code Coverage

Measured mean decompiler code coverage across 24-hour fuzzing trials
= Computed basic block coverage via the AFL-QEMU-Cov utility

Bin2Wrong Bin2Wrong
vs. Cornucopia vs. DecFuzzer

Basic Block Coverage +1 6% .|.32%
Generated Binaries -74% _95%

Metrics

Takeaways: Bin2Wrong's binaries each exercise more decompiler internals

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Zao Yang

Evaluation: Decompiler Bugs

Enumerated total unique bugs throughout all 24-hour fuzzing campaigns
= All bugs manually deduplicated and reported to their respective decompiler developers

Decompiler DecFuzzer | Cornucopia

Metrics DecFuzzer | Cornucopia Angr 0 5
Total Found Bugs 0 10 BinNinja 0 0
Reko 0 3

Individually-found 0 A R2Ghidra 0 1
Relyze 0 2

Confirmed or fixed 0 5 RetDec 0 2
rev.ng 0 0

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Zao Yang

Evaluation: Decompiler Bugs

Enumerated total unique bugs throughout all 24-hour fuzzing campaigns
= All bugs manually deduplicated and reported to their respective decompiler developers

Metrics DecFuzzer | Cornucopia | Bin2Wrong
Total Found Bugs 0 10 48
Individually-found 0 A L2
Confirmed or fixed 0 5 30

Decompiler DecFuzzer Cornucopia | Bin2Wrong
Angr 0 2 9
BinNinja 0 0 1
Reko 0 3 6
R2Ghidra 0 1 2
Relyze 0 2 7
RetDec 0 2 1
rev.ng 0 0 2

Takeaways: Bin2Wrong's diverse binaries expose more decompiler bugs
= Since reporting, 30 are now confirmed and/or fixed

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Zao Yang

27

Case Studies: Bin2Wrong-found Bugs

/ . Decompiled on Decompiled on
Original -00 -O1
while (v0 !'= 11){ while (v0 !'= 11){ while (vO0 != OxFFF5) {
vO0++; vO0++; v0--;

v

i } } }
i Incorrect while-loop logic on -01 optimized binaries

————— e~

Binary Decompiled

mov rsi, [0x100] "AB"]—»[char* s = "AB";]
Source

v

[char *s = "AB";

mov rax, [0x100] 0x200

mov rsi, [rax] "AB" NN = = RS]

X

Failed string literal recovery on TCC-compiled binaries
N o

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Zao Yang

R

__

[func(x, Y, 2);]

Decompiled

[funC(x, Y, 2); J [funC(z, Y, X); J

" v A# X

Wrong arg ordering on ELF/MachO

I

28

Bin2Wrong found a critical bug in commercial decompiler Binary Ninja

Case Studies: Bin2Wrong-found Bugs

-

}

int var = 0, int idx = 1;

switch (var) {

~

case 0: var=5; break;
case 1:

case 2: ..

default: idx=0; break;

.

Results: var=?, idx=?)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

Zao Yang

//int var = 0, int idx = 1; \\
if (var == 2) { ... }
else {
if (var == 0): var=5;

}

if (var == 1): ...
if (var > 2): idx=0;

.

Results: var=?, idx=? Y,

29

Bin2Wrong found a critical bug in commercial decompiler Binary Ninja

Case Studies: Bin2Wrong-found Bugs

-

}

int var = 0, int idx = 1;

switch (var) {

case 0:
case 1:
case 2: ...
default: idx=0; break;

var=5; break;

.

Results: var=5, idx=1

~

v

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Zao Yang

//int var = 0, int idx = 1;
if (var == 2) { ... }
else {

if (var == 0): var=5;
if (var == 1): ...
if (var > 2): idx=0;
}
Results: var=5, idx=0
.

~

30

Case Studies: Bin2Wrong-found Bugs

Bin2Wrong found a critical bug in commercial decompiler Binary Ninja
= Spurred an overhaul of Binary Ninja’s internal control flow recovery processes

& Vector35 / binaryninja-api ' Public BINARY NINJA BLUG

<> Code G) Issues 1.7k 19 Pullrequests 29

== | | RESTRUCTURING THE BINARY NINJA DECOMPILER

Issue with soundness of HLIL control ® ‘ .

flow structuring #5201 & Rusty Wagner @ 2024-06-19 ®reversing, decompiler

Bug For the upcoming Binary Ninja 4.1, we will be releasing a new

implementation of our decompiler’s control flow recovery.

Assigness T one of the primary motivations for this improvement was a privately

Labels [component: Core X Core: HLIL X Effort: High } reported decompilation flaw from Zao Yang and Dr. Stefan Nagy of
the FUTURES® Lab. Keep an eye on their forthcoming research and

Jo— © 4.1 (Elysium) we're grateful for their notification!

binary.ninja/2024/06/19/restructuring-the-decompiler.html

Takeaways: Bin2Wrong exposes critical decompiler bugs missed by others

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Zao Yang

31

https://binary.ninja/2024/06/19/restructuring-the-decompiler.html

Conclusion: Why Bin2Wrong?

Decompiler errors create downstream failures
= Hence, testing decompilers is critical to fixing them

Prior fuzzers fail to thoroughly test decompilers
= Only partial coverage of source/compilation factors
= Vast majority of binary diversity thus left unexplored

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Zao Yang

32

Conclusion: Why Bin2Wrong?

Decompiler errors create downstream failures
= Hence, testing decompilers is critical to fixing them

Prior fuzzers fail to thoroughly test decompilers
= Only partial coverage of source/compilation factors
= Vast majority of binary diversity thus left unexplored

Our solution: Bin2Wrong
= Unified mutation coalescing source and compilation
= Support for 6 compilers, 5,183 optimizations, all major
executable formats, and virtually all C code constructs
= Qutcome: systematic decompiler fuzzer exploring all of
these individual dimensions—and combinations thereof

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Zao Yang

-~

o

Key Results:
6-16x higher
binary diversity,
16-32% higher
code coverage,

48 new errors,
30 confirmed

~

/

33

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Thank you!

() github.com/FuturesLab/Bin2Wrong

Contact:
& zaoyang@utah.edu

@yangzaocn

BIN2WRONG % @zaoyang.bsky.social

FUTURE TECHNOLGY FOR USABLE, RELIABLE, &
EFFICIENT SECURITY OF SOFTWARE & SYSTEMS

Zao Yang

34

